



Thermal Transmission Properties of

Phenolic Foam Composite Panels

Alternative Thickness Calculations Status: Final for issue

Commercial-in-Confidence

Prepared for:

Delta Panels Pty Ltd

Address:

731 Boundary Road, Richlands, QLD 4077

Agreement: Cat 5 20240607 Report: XC4016/R3 Issue date: 28/08/2024

Test Report XC4002/R3

Calculated declared thermal performance of Phenolic Foam Composite

Prepared on behalf of CSIRO by

Name Ms Neythra Weerakkody

Position Testing Officer – Materials Performance

Date 24-June-2024

Signature

Authorised signatory

Name Dr Robin Clarke

Position Senior Engineer – Thermal Measurement

Date 28-August-2024

Signature

Report Status and Revision History

VERSION	STATUS	DATE	DISTRIBUTION	COMMENT
Revision A	Final	24 June 2024	CSIRO	Draft Issue for internal review
Revision B	Final	28-August-2024	CSIRO, Delta Panels Pty Ltd	Final Issue

Commonwealth Scientific and Industrial Research Organisation Services Infrastructure Technologies Materials Performance

Research Way (Central Reception, Building 203) CLAYTON, VIC AUSTRALIA, 3168

Web: http://www.csiro.au Fax: +61 (0)3 9544 1128

Accredited for compliance to ISO/IEC 17025 - Testing

Copyright and Disclaimer

To the extent permitted by law, all rights are reserved and no part of this publication covered by copyright may be reproduced or copied in any form or by any means except with the written permission of CSIRO.

CSIRO reports apply only to the specific samples investigated under the stated criteria and conditions. It is the client's responsibility to assure that production units of the products are of identical manufacture. CSIRO shall have no liability for deductions, inferences or generalisations drawn by the client or others from reports issued by CSIRO. This report shall not be used to claim, constitute, or imply product endorsement by CSIRO

Client

Delta Panels P/L

Reports XC4002/R1 and XC4002/R2 have characterized the declared thermal resistance of Phenolic Foam Composite at the low and high ends of the thickness range with results that are summarized in Table 1.

Table 1. Declared thermal performance of Phenolic Foam Composite Panels at 23°C mean temperature

CSIRO Report Number	Product Nominal Thickness (mm)	Declared Thermal Resistance (m ² .K/W)	Declared Thermal Conductivity (W/m.K)
XC4002/R1	50	1.32	0.039
XC4002/R2	200	5.15	0.039

AS/NZS 4859.1 allows for interpolation and limited extrapolation at other thickness values to arrive at declared thermal values for these thicknesses. Calculation is based on the highest declared value of thermal conductivity, the rounded value of which in this case is 0.039 W/m.K. The client has provided a list of alternative thickness values for which the following declared thermal resistance values have been calculated.

Table 2. Calculated declared thermal performance of Phenolic foam composite at 23°C mean temperature at intermediate thicknesses

Product Nominal Thickness (mm)	Calculated Declared Thermal Resistance (m ² .K/W)
60	1.55
70	1.80
75	1.90
80	2.07
90	2.30

Product Nominal Thickness (mm)	Calculated Declared Thermal Resistance (m ² .K/W)
100	2.55
110	2.85
125	3.20
150	2.85
175	4.50

The above calculations assume that all examples of the product meet or exceed the nominal thickness value and that the average density is also met or exceeded.